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Abstract
Realizing a shared responsibility between providers and con-
sumers is critical to manage the sustainability of HPC. How-
ever, while cost may motivate efficiency improvements by in-
frastructure operators, broader progress is impeded by a lack
of user incentives. We conduct a survey of HPC users that re-
veals fewer than 30% are aware of their energy consumption,
and that energy efficiency is among users’ lowest priority
concerns. One explanation is that existing pricing models
may encourage users to prioritize performance over energy
efficiency. We propose two transparent multi-resource pric-
ing schemes, Energy- and Carbon-Based Accounting, that
seek to change this paradigm by incentivizing more efficient
user behavior. These two schemes charge for computations
based on their energy consumption or carbon footprint, re-
spectively, rewarding users who leverage efficient hardware
and software. We evaluate these two pricing schemes via
simulation, in a prototype, and a user study. We demonstrate
there exist trade-offs where existing pricing models would
charge 45% more to run the same task on a more efficient
machine, but Energy-Based Accounting charges 47% less.
When presented to real users, Energy-Based Accounting in-
centivized people run tasks more efficiently, resulting in 41%
energy savings.

1 Introduction
Sustainability of HPC is a shared responsibility between in-
frastructure providers (who buy servers, source electricity,
build and cool data centers, etc.) and consumers (who write
software and decide what, where, and when to compute [1]).
These roles should be complementary; however, they cur-
rently operate disjointly. Providers tout efficient facilities and
investments in renewable energy [2–4] but are constrained
by the amount, time, and location of consumer demand. Con-
sumers are told that they can reduce environmental impact
by using specific hardware or improving utilization but lack
information to accurately account for energy or carbon use.
Although many tools and techniques have been developed to
improve energy efficiency, they require user adoption [5–8]
or at least cooperation between user and provider [9–12].
With computing demands increasing [13] and efficiency im-
provements slowing, we need users to become conscious of
their efficiency and environmental impact.
Existing incentives feed this division of roles. Resource

providers often assume all responsibility for energy costs,
and thus are motivated to pursue higher efficiency. Users,
however, are typically incentivized to choose resources based

Low Cost
Low Carbon
Low Energy

High Cost
High Carbon
High Energy
 

Figure 1.As computing demands increase [13] and efficiency
improvements slow, we need users to become conscious of
their efficiency and environmental impact to enable sustain-
able computing.

on opaque pricing or allocation mechanisms. This situation
leads to users prioritizing higher performance and cost re-
duction over potentially more energy-efficient hardware and
software. Innovation in hardware and software efficiency will
have little impact without user incentives to adopt more effi-
cient practices. In this work, we study mechanisms to make
sustainability a first-class concern among HPC users.

We first survey more than 300 HPC users to assess knowl-
edge, attitudes, and behaviors in regards to energy consump-
tion.We find a prevailing lack of awareness of energy consump-
tion, lack of action to reduce energy, disregard for efficiency or
sustainability rankings, and a low priority on energy efficiency.

We then propose to address these issues by adopting an ap-
plication’s environmental impact as the measure of its resource
usage. We develop two such impact-based accounting ap-
proaches: Energy-Based Accounting (EBA)which charges
jobs based on energy used, and Carbon-Based Accounting
(CBA), which charges jobs based on estimated carbon foot-
print. Thus, a user might be allocated 10 kg carbon emissions
(kgCO2e), rather than 100 node hours; be able to estimate the
kgCO2e required for a computation on different machines;
and track kgCO2e rather than node hours. We hypothesize
that the adoption of such an accounting scheme across fa-
cilities will incentivize users both to run on resources that
are energy efficient for their application and to write energy-
efficient software, as both choices will allow them to perform
more computation for the same cost. We envisage using EBA
and CBA for individual HPC system allocations as well as
for fungible multi-resource HPC allocations.

To study the effect of impact-based accounting on energy
consumption and system utilization, we simulate EBA and
CBA with different user behaviors. We then build a CBA pro-
totype that leverages a Function-as-a-Service (FaaS) interface
to heterogeneous resources to realize impact-based account-
ing efficiently. This platformmakes user energy consumption
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transparent, seamlessly guides users to better resources, and
incentivizes sustainable use of computing resources. Finally,
we conduct a study of how impact-based accounting changed
the behavior of real users in a simulated environment.

The contributions of this paper are:

• A survey of 300+ HPC users to assess awareness of
energy consumption and other sustainability metrics.

• Energy- and Carbon-Based Accounting approaches
for pricing HPC use, based on energy consumption
and carbon footprint, respectively.

• Aprototype FaaS platform that employs Carbon-Based
Accounting that can guide users to more sustainable
computation.

• A user study to evaluate behavior within an Energy-
Based Accounting scheme.

2 Motivation
We first examine the prevailing attitudes of HPC users to-
wards sustainable computing practices. Specifically, we de-
veloped a survey to understand how users consider energy
relative to other concerns in computing and examine their
awareness of existing sustainability metrics and techniques.
We describe the survey design and summarize key findings.

2.1 Survey Design
We employed Qualtrics, a platform for assembling, distribut-
ing, and managing online surveys. We defined 33 questions
that examine a participant’s familiarity with their energy
consumption and other sustainability-related questions. Our
target participant is anyone who submits jobs or develops
code for HPC machines. As such, we distributed the survey
to HPC user groups, facilities, science collaborations known
for use of HPC, and user groups of popular HPC tools. Par-
ticipants were not required to respond to all questions.

2.2 Results
We received 316 responses, of which 192 completed 90% of
the survey or more. 166 respondents were located in Eu-
rope, 104 in North America, 4 in Oceania, and 4 in China. 73
respondents were graduate students, 97 were early career re-
searchers/engineers, and 99were senior researchers/engineers.
In lieu of screening candidates by the frequency they use
HPC resources or their career stage, we relied on participants
to self-identify as HPC users and asked them to estimate the
amount of node-hours they used HPC resources. We did not
observe a significant difference in responses based on career
stage or amount of use.
We first examine HPC user awareness of their resource

use. 73% of participants were aware of howmany node hours
a job/workflow consumes, and 70% indicated that they had
taken steps to reduce the number of node hours used. This
aligns with the more than 80% of users who were very or
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Figure 2. Responses to the question “Are you aware of how
the HPC resources you use perform on the following sustain-
ability metrics?” Users do not use existing metrics/rankings
when deciding which machine to use to run a job.
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Figure 3. Energy efficiency is among the least important fac-
tors for users when choosing where to run a job. Meanwhile,
funding is often a very important factor for users.

mildly concerned with finishing their jobs within their al-
location, typically measured in node hours. 77% of those
concerned about completing their jobs had taken steps to
reduce the node hours their jobs consume. Overall, users
are aware of their node-hour usage, concerned about
completing their jobs within their allocation, and take
steps to reduce their node hours as a result.
In contrast, only 27% of respondents were aware of the

amount of energy their workload consumes and 30% had
taken steps to reduce energy use. Counterintuitively, there
is not strong overlap between these groups. 39% of people
who have taken steps to reduce their energy use were not
aware of how much energy their jobs consume. Few users

2
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are aware of their energy consumption or have taken
steps to reduce it.
We also examine familiarity with rankings assessing ef-

ficiency. Rankings such as the Green500 [14] and Graph
Green500 [15], and benchmarks like the SPEC Server Effi-
ciency Rating Tool (SERT) [16], reduce machine efficiency to
a single number to help providers or users select resources.
Carbon intensity captures carbon emissions from produc-
ing electricity, which varies based on facility location [17].
Power Usage Efficiency (PUE) captures the fraction of facility
electricity that is used for computing compared to cooling
or other needs [2]. Participants reported some familiarity
with these metrics, with 94 (51%) and 55 (30%) respondents
knowing of Green500 and Carbon intensity, respectively.
However, this knowledge does not affect user behavior. As
shown in Figure 2, few respondents were aware of how the
resources they use perform on these metrics. For instance,
of the 94 people familiar with the Green500 list, only 36 (20%
of all respondents) knew how the machine they were using
performed on that ranking.While users are familiar with
metrics designed to improve sustainability, most do
not know how they apply to their own machines.
Given these findings, it is not surprising that energy effi-

ciency is among the least important metrics people use when
selecting a machine. Figure 3 shows participant responses
when asked how important various parameters were in se-
lecting which machine to use. While 83 respondents said
machine performance was very important when selecting
which machine to use, only 25 said energy efficiency was
very important. This is problematic for providers looking
to invest in more efficient options for users: without a shift
in incentives, users will prioritize performance over effi-
ciency. In summary, users do not select machines based
on energy efficiency, instead they prioritize hardware
availability, queue times, performance and funding.

3 Methods
We learned that, for the most part, users of HPC resources
do not consider energy (or carbon) when deciding what to
run, where to run it, and when to run it. However, the study
also revealed that users are motivated by limited resource
allocations and funding directives. We propose new resource
pricing models in which the allocation cost of using a compu-
tational resource is based on the energy or carbon consumed
by the computation, rather than the execution time or the ex-
ecution time scaled by machine-specific factors. Thus, users
seeking to maximize their allocations will be incentivized
towards more sustainable behavior. As we discuss in the
following, our approach combines solutions to two prob-
lems: (1) How to incorporate both energy and usage into an
accounting method; and (2) How to account for carbon.

3.1 Background: Fungible Allocations
We design accounting methods for fungible allocations: al-
locations that can be used for computing on multiple re-
sources. Such allocations are employed, for example, by the
US National Science Foundation (NSF) Advanced Cyberin-
frastructure Coordination Ecosystem: Services and Support
ACCESS [18], Chameleon Cloud [19], or even internally
within Google [20]. Fungible allocations provide flexibility by
allowing users to select between different machines, which
may potentially have different efficiencies. Fungible alloca-
tions may be based only on time (e.g., Chameleon Cloud
allocates users a constant number of node hours that can
be redeemed on any node) or on a mix of time and perfor-
mance (e.g., ACCESS grants users service units that can be
exchanged for allocations on more than 30 machines based
on machine-specific exchange rates; Google tracks Google
Compute Units which standardizes core-time to the same
amount of computational power on any machine in the fleet).

3.2 Energy-Based Accounting Model
Our Energy-Based Accounting (EBA) model charges users
for energy used rather than time spent computing.

Intel and AMD CPUs support accurate CPU energy read-
ings [21] that can be collected and accounted for by a cluster
management tool [22]. Baseboard Management Controllers
(BMCs) could also be used, or the energy could be multiplied
by the power usage efficiency (PUE) to give a more holistic
accounting of the energy a node uses.

One challenge with charging for energy-consumed is the
trade-off between potential and actual usage. When account-
ing for time, i.e., node hours, providers charge based on the
potential usage of a resource—a user is charged for a resource
regardless of how they use it because it cannot be allocated
to another user. Replacing time with energy in the account-
ing model implies that the end price depends on user activity.
This is a double-edged sword: users who write more efficient
software are rewarded with reduced costs, but so are users
who do not fully use allocated hardware, even though the
provider cannot charge others for those resources. In the
limit, an incompetent user would be charged a small amount
for a large allocation if they put those resources to sleep.

To address this issue, we incorporate the potential use of
a node into our calculation. We use a processor’s Thermal
Design Power (TDP)—the maximum sustained power that
a processor is designed to dissipate—as a surrogate for a
node’s possible utilization. We define a resource’s TDP as
the sum of the TDPs for all devices on that resource. We then
charge users for the average of the actual energy consumed
and the amount of energy that potentially could have been
consumed had they used the resource fully. For a job 𝑗 on
resource 𝑅 that uses energy 𝑒 𝑗 and takes duration 𝑑 𝑗 , the cost
based on the energy charge is:

𝑒 𝑗 = (𝑒 𝑗 + 𝛽 · 𝑑 𝑗 · TDP𝑅)/2, (1)
3
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The parameter 𝛽 can be used to balance the weight placed
on the TDP for scenarios where the TDP of a device is much
greater than the typical power use and skews the cost. For
this paper, we set 𝛽 = 1, so that Equation 1 becomes an
unweighted average of the power and TDP.

One consequence of factoring potential use into our charg-
ing equation is that energy consumption must still be bal-
anced with job duration. Energy efficiency improvements
that result in too much slowdown will increase total cost.
Using the average between energy used and TDP keeps ac-
counting simple, understandable, and transparent.

3.3 Carbon-Based Accounting Model
Energy consumption is not the only factor that contributes to
the sustainability of a computing facility [23]. Estimating the
carbon footprint of a computation gives us a mechanism to
account for more holistic impacts. To that end, our carbon-
based accounting (CBA) model charges users based on
the gCO2e, i.e., grams of carbon dioxide equivalent, used.
This footprint encompasses the operational carbon of the
electricity used to run a job and a portion of the machine’s
embodied carbon that we attribute to a job.

We use the carbon intensity (𝐼𝑓 ) of the electricity grid at
facility 𝑓 to estimate the operational carbon of a job. Carbon
intensity estimates the carbon emissions used to generate
electricity in gCO2e per kWh based on the generation source,
which varies by location and time. These estimates can be ob-
tained from grid operators or public APIs [17]. Incorporating
carbon intensity in the accounting model incentivizes users
to choose to run jobs in locations with renewable energy
and at times when renewable energy is widely available.

To attribute embodied carbon to a job, we differ from the
standard practice of allocating the embodied carbon of a
device linearly based on time [24]. Instead we treat the em-
bodied carbon more like a capital expense invested in the
machine, that is then depreciated over time as jobs are run
on the machine. Our rationale for this approach is that the
embodied carbon allocated to a job should be proportional
to the utility derived from using the machine. The embodied
carbon of a machine is emitted largely before being deployed,
through mining materials, fabricating chips, and transport-
ing parts. Users demanding the latest technologies drive
providers to acquire new machines. Alternatively, users who
leverage older technology allow hardware providers to ex-
tend refresh cycles [25], reducing emissions in the long term
as fewer machines are manufactured. Thus, users who use a
machine earlier in it’s lifespan are charged a higher rate.

Specifically, we employ a form of accelerated depreciation
called double declining balance [26]. In line with standard
guidance and typical refresh periods [25], we assume an
HPC machine has a depreciation period of five years which
corresponds to a 40% depreciation rate. For a machine with
𝐶𝑓 total embodied carbon, the unaccounted-for carbon in

year 𝑡 is:
𝑅𝑓 (𝑡) = 𝐶𝑓 · (1 − 0.4)𝑡 ,

the embodied carbon allocated to year 𝑡 is:

𝐷 𝑓 (𝑡) = 0.4 · 𝑅𝑓 (𝑡),
and the carbon-rate per hour of resource utilization is

𝐷 𝑓 (𝑡)/(24 ∗ 365).
Thus the total carbon charge for a job 𝑗 run at facility 𝑓

with carbon intensity 𝐼𝑓 that uses 𝑒 𝑗 kWh is:

𝑐 𝑗 = 𝑒 𝑗 · 𝐼𝑓 + 𝑑 𝑗 · 𝐷 𝑓 (𝑡)/(24 ∗ 365). (2)

4 Simulation Studies
To analyze EBA and CBA at scale, we conduct simulations of
real workloads and machines. We modify an existing batch
simulator to use the proposed accounting policies onmultiple
machines [27]. Our goals are to (1) understand how different
choices affect the cost of running a workload under EBA and
CBA, (2) examine how different accounting models translate
to resources used, and (3) explore how low-carbon scenarios
may affect the accounting models.

4.1 Machines
We characterize in Table 1 the machines used in our simula-
tion. For each, we indicate: Cores per Node; CPU Thermal
Design Power (the maximum heat in watts that a CPU can
dissipate); Idle Power (total power consumed by the CPUs
when running only the monitoring code); Carbon Rate (see
Section 3.3); and Carbon Intensity, based on the yearly aver-
age emissions for generating electricity on the grid where
the cluster is located, retrieved from Electricity Maps [17].
Three of the machines are in HPC centers: FASTER, In-

stitutional Cluster (IC), and Theta. The fourth machine is a
personal computer referred to here as Desktop. Each system
is unique, and (as we show below) selecting one over another
can yield significantly different results for a user.

4.2 Workload
We use a published dataset of per-job energy use from two
HPC clusters [28] over a five-month period. We discard jobs
run by the same user with the samewalltime and nodes as we
consider them to be repetitions of the same app and have the
same cross-platform characteristics. Finally, we discard jobs
that lack an associated energy value. This reduces the dataset
from ∼84k jobs to 71,190 unique executions. We repeat each
execution twice to generate a workload of 142,380 jobs. Any
job can run anywhere, except that 17% of jobs require more
cores than are available on the one-node Desktop.
The dataset that we use to construct this workload pro-

vides, for each job, energy consumption only on onemachine.
We use a best-effort approach to extrapolate these data to our
machines. To begin, we assume that the reported runtime
and energy consumption correspond to running on IC, the

4



441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Core Hours and Carbon Credits EuroSys ’25, March 30 – April 02, Rotterdam, Netherlands

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Table 1. Machines used for simulation. TDP=Thermal Design Power, in Watts. Idle power is for all sockets on the node.

Machine Year
Deployed CPU Model # of

Cores

CPU
TDP
(W)

Idle
Power

(W)

Carbon
Rate

(gCO2e/h)

Carbon
Intensity

(gCO2e/kWh)
TAMU FASTER 2023 2 × Intel Xeon 8352Y 64 205 205 105.2 389

Desktop 2022 Intel Core i7-10700 16 65 6.51 12.2 502
Institutional Cluster 2021 2 × Intel Xeon 6248R 48 205 136 16.7 502

ALCF Theta 2017 Intel KNL 7320 64 215 110 2.0 502

system most similar to the source dataset. We then adapt a
method to predict energy use and runtime had jobs been run
on the other machines [29]. First, we generate realistic values
for hardware performance counters (i.e., LLC Misses/sec., In-
structions/sec) for each job using a Gaussian Mixture Model
trained on data collected on IC. We then use a KNN [29]
trained on a set of benchmark applications [30] to estimate
runtime and power consumption on the other machines.

4.3 Policies
To simulate user choice, we define eight machine selection
policies that select which machine to submit a job to based
on the system state (queue times) and job profile (energy use,
runtime, or cost on each machine). Each simulated user is
limited to one running job on a cluster at a time. The eight
policies are:

• Greedy: Select machine that minimizes cost, accord-
ing to the accounting method (EBA or CBA) used.

• Energy: Select machine that minimizes energy con-
sumption.

• Mixed: Balance runtime and cost. Select machinewith
the least allocation cost (in terms of EBA or CBA)
unless another machine can complete the job in half
the time, in which case select that machine.

• EFT (earliest finish time): Select machine that mini-
mizes completion time, i.e., queue time + runtime.

• Runtime: Select machine with shortest runtime.
• Theta, IC, and FASTER: Always select that machine.

4.4 Results with Energy-Based Accounting
Figure 4 depicts the amount of work (in core-hours) com-
pleted by a user when applying each policy n a fixed alloca-
tion (cost). Specifically, to calculate “work”, for each job, we
take its average runtime across all the machines multiplied
by the number of cores requested. This places higher weight
on larger and longer jobs, without favoring any one machine.
In general, the single-machine policies (Theta, IC, and

FASTER) and policies that do not consider energy (EFT and
Runtime) perform less work for the same cost. A user using
Theta is severely disadvantaged by EBA because they submit
all jobs to an older machine that is inefficient for most tasks,
resulting in high energy consumption. Using Greedy, a user
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Figure 4. Work completed with fixed allocation using EBA.

is able to complete the most work, because, by definition,
they use the cheapest machine for every task. This results
in completing 28% more work than when using the perfor-
mance focused EFT policy. A user employing Energy can
complete 99% of the work done using Greedy because the
most efficient machine is often the cheapest machine.Under
EBA, by optimizing for energy, a user is indirectly op-
timizing for cost; in other words, the cost incentivizes
users to be more energy efficient.

Next, we examine how the different policies relate to com-
pletion time. Using a single machine is detrimental in terms
of completion time because of long queue times. This is visi-
ble in Figure 5, which shows the number of jobs completed
by different policies over time. From Figure 5, we also see
that using Mixed a user is able to compute 100,000 jobs as
fast as using EFT while using less allocation. By balancing
energy efficiency and performance, users can reduce
cost under EBA without impacting completion time.
We now consider only the multi-machine policies and

examine how each policy affects total energy consumption.
Figure 6 shows the energy consumed using each policy over
the full workload (i.e., not considering the initial allocation).
Logically, we see that using Energy consumes the least en-
ergy. A user optimizing cost instead of the energy by using
Greedy resulted in only 2% more energy use. In contrast,
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Figure 5. Number of jobs completed over time with a fixed
allocation using EBA.
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Figure 6. Energy consumed per policy over full workload.

applying EFT or Runtime results in 51% or 57% more en-
ergy respectively. Performance and efficiency are not always
aligned. A user prioritizing the speed of their workload
in terms of either makespan or core hours may make
inefficient decisions.
Finally, we investigate how EBA might affect the usage

of each machine. Figure 7 shows how jobs are distributed
with each policy. Greedy and Energy policies distribute jobs
similarly to FASTER, Desktop, and IC. Greedy and Energy
allocate no tasks to Theta because it is neither the cheapest
nor the most energy efficient. In contrast, Mixed distributes
tasks to all four machines to reduce the completion time.
Overall, EBA may lower utilization of inefficient ma-
chines to reduce energy consumption, but users may
choose to use less efficient machines at a higher cost
to avoid long queues.
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Figure 7. Distribution of jobs over machines by policy.
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Figure 8. Work completed with fixed allocation using CBA.

Table 2. Energy and carbon usedwhen deploying each policy
while computing the full workload when using CBA.

Policy Energy used (MWh) Carbon used (KgCO2e)

Greedy 338 186
Energy 320 190
Mixed 393 214
EFT 484 262

Runtime 501 261

4.5 Results with Carbon-Based Accounting
Next, we analyze CBA as described in Section 3.3. Although
carbon intensity varies throughout the day and by season,
we use the yearly average intensity for the simulation. For
Figure 8, we allow a user employing Greedy to run the same
amount of work as in Figure 4. We see that using Energy, a
user can run comparably fewer jobs than under EBA, while
using Runtime, a user is able to run comparably more. This
results from the high carbon rate of FASTER: while often
selected by Energy (see Figure 7), it has a much higher em-
bodied carbon rate. Since Energy favors FASTER and Runtime
favors IC, and neither adapts to price, deploying Runtime
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Figure 9.Work completed with a fixed allocation using CBA
and with reduced carbon intensity for all machines.

policy allows a user to complete more work in the same
allocation. Greedy adapts to the new accounting scheme
and submits 50% of its workload to IC and only 11% of its
workload to FASTER. Although Theta has the lowest em-
bodied carbon rate, its higher energy use still renders it a
costly choice. The energy and carbon consumed with CBA
are detailed in Table 2. With CBA, we focus on a different
metric, but the results are analogous to EBA.Minimizing
cost allows a user to compute the most work while
using the least carbon, incentivizing the selection of
efficient machines with less embodied carbon.

4.6 Results with Reduced Carbon Intensity
Carbon intensity can vary considerably across both locales
and time—from as low as 16 gCO2e/kWh in northern Swe-
den to 600 gCO2e/kWh in parts of the US and almost 800
gCO2e/kWh in Poland [17]. We simulate a futuristic scenario
involving a low-carbon grid, using Sweden as an example.
Mining, manufacturing. and transportation are also tran-
sitioning to lower-carbon methods which can reduce the
embodied carbon of new devices, but in this scenario, we do
not adjust the embodied carbon rate.

We show in in Figure 9 the amount of work performed un-
der each policy with a fixed CBA allocation and in Figure 10
the distribution of jobs across machines. We see in Figure 10
that, relative to previous results, Greedy runs a larger pro-
portion of jobs on Theta, the oldest machine with the lowest
embodied carbon rate, but never selects FASTER because the
energy efficiency improvements of this new hardware are
not worth the embodied carbon when electricity generation
is very “green”. The effects of this trade-off are shown by
Table 3, where Greedy lowers the carbon consumed but in-
creases the energy consumed compared to the other users.
This is in line with previous work arguing low-carbon elec-
tricity means more energy must be saved by new hardware
to justify upgrading [23]. In this scenario, CBA incen-
tivizes use of older machines to delay obsolescence,
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Figure 10. Distribution of functions over machines with
reduced carbon intensity for the full workload.

Table 3. Energy and carbon usedwhen deploying each policy
while computing the full workloadwhen using CBA andwith
reduced carbon intensity on all machines.

Policy Energy (MWh) Carbon (KgCO2e)

Greedy 513 19
Energy 320 67
Mixed 492 34
EFT 484 42

Runtime 501 21

Request Router

Access Control

Prediction Endpoint
Monitor

Cloud-Hosted
Kafka 

Globus 
Compute

GC Endpoint

GC Endpoint

GC Endpoint

1

2

3

Figure 11. Architecture of the green-ACCESS prototype. The
three principal system components, shaded green, grey, and
orange, are described in the text.

increase refresh times, and reduce embodied carbon in
the future.

5 Prototype
We implemented green-ACCESS, a prototype HPC-FaaS plat-
form with a CBA scheme.

5.1 Design
We built green-ACCESS with a FaaS interface that provides a
flexible and adaptive runtime, allowing us to efficiently real-
ize impact-based allocations. Recent work shows that FaaS
can improve resource utilization and accelerate applications
on HPC systems [31–33]. While FaaS simplifies migration of
applications between different systems, EBA and CBA can be

7



771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

EuroSys ’25, March 30 – April 02, Rotterdam, Netherlands Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Figure 12.Web interface for green-ACCESS prototype.

implemented independently of FaaS. Our system comprises
three major components (see Figure 11).

1 The frontend supports user interactions. An access
control system implements accounting and admission con-
trol. Users can employ a Web interface (see Figure 12) or
Python interface to access a prediction service that provides
estimates of the energy consumption of their jobs. Jobs are
submitted via a FaaS interface.

2 green-ACCESS uses Globus Compute as the FaaS plat-
form to run Python functions on HPC systems [31]. green-
ACCESS calculates expected CBA charges before forwarding
requests to Globus Compute. Registering a machine with
green-ACCESS requires deploying a Globus Compute End-
point (GCE) equipped with a monitor that polls data from
the RAPL interface, reads hardware counters, and commu-
nicates those data back to green-ACCESS. This integration
with Globus Compute allows green-ACCESS to be deployed
within (or beside) existing cluster management systems.

3 Energy and performance counter data are transferred
via Kafka back to green-ACCESS, where they are consumed
by the green-ACCESS endpoint monitor, a streaming con-
sumer based on the Faust library [34]. The endpoint monitor
is responsible for disaggregating per-node power measure-
ments from the RAPL subsystem [21, 35] into user jobs. To
this end, we collect, in addition to the energy information,
per-process hardware performance counters and periodically
fit a power model between performance counters and mea-
sured energy [36, 37]. For GPUs, we assume that an entire
device is allocated to a single job. The per-process estimates
are aggregated to obtain the energy used by a task. These
values are used to charge users and refine predictions for
future instances of that function. Estimation and accounting
are performed asynchronously from job completion.

5.2 Comparison of Pricing Models
Using the prototype, we evaluate the price of executing a
function with five different accounting methods:

• Runtime: Price is determined only by the core-time
used, not accounting for heterogeneity. This is similar
to the model used by Chameleon Cloud [19].

Table 4. Runtime, energy consumption, and costs on differ-
ent CPU nodes running a Cholesky Decomposition.

Machine Metrics Normalized Costs
Time

(s)
Energy

(J) EBA CBA Perf.

Desktop 5.20 18.3 1.0 1.0 1.43
Cascade Lake 4.68 35.8 1.90 1.20 1.0

Ice Lake 4.60 19.8 1.10 1.10 1.06
Zen3 5.65 16.8 1.05 1.15 1.36

• Energy: Price is determined only by the energy used,
without accounting for device capacity.

• Peak: Price is determined by core-time used, multi-
plied by machine peak performance. This metric ac-
counts for heterogeneous devices by charging more
for higher performance systems—a similar model to
that used by ACCESS, although the mechanisms to de-
termine the charging factors are not transparent [18].

• EBA: The proposed Energy-Based Accounting.
• CBA: The proposed Carbon-Based Accounting.

The prototype platform uses CBA, and we calculate EBA and
the other accounting methods post-facto for comparison.
We first execute a Cholesky decomposition of a 0.5 GB

single precision matrix on CPU nodes. We select Chameleon
Cloud nodes [19] resembling the systems of Table 1: A Desk-
top matching the above specifications, a Cascade Lake node
matching the specifications of IC, and an Ice Lake node with 2
Intel Platinum 8380 CPUs, similar to FASTER. As Chameleon
lacks a node similar to Theta, we instead use a Zen3 node
with 2 AMD EPYC 7763 processors with 64 cores each.

The results in Table 4 show the undesirable properties of
the Runtime and Peak pricing models. As the Cholesky appli-
cation runs fastest on the Cascade Lake and Ice Lake systems,
charging based solely on Runtime assigns the lowest cost
on those machines. But those two machines consume the
most energy. If usage is weighted by peak performance, as
in Peak, then as Zen3 and Desktop have the highest peak
performance per thread [38] but are the slowest systems for
this task, they cost the most. Indirectly, both pricing models
incentivize higher energy use.

In contrast, the EBA price mirrors task energy usage. The
notable discrepancy between Energy and EBA is that al-
though Zen3 uses the least energy, it has a slightly higher
EBA cost than Desktop. This difference results from pricing
for utilization in Equation 1: Zen3 has a higher TDP per core
than Desktop, so it costs more to use per time. CBA shares
some properties of EBA, with Desktop having the lowest
cost and Cascade Lake the highest. However, the newer Zen3
is charged a higher price for embodied carbon. Overall, we
see that running on a more efficient machine, which
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Figure 13. Energy consumed by different GPUs when run-
ning a tiled Cholesky Factorization.

would cost more with existing pricing models, costs
47% and 17% less under EBA and CBA, respectively.

The pricing models and trade-offs that we have demon-
strated on different CPU machines extend to GPUs. For this
experiment, we run a tiled Cholesky decomposition on a
42 GB single precision matrix, using the StarPU runtime sys-
tem to orchestrate the application across multiple GPUs [39].
Figure 13 shows the energy consumed by different genera-
tions and numbers of GPUs. Different compute nodes host
up to 8 GPUs. We observe that: 1) Energy consumption ini-
tially decreases as the number of GPUs increases and then
stabilises when more than four GPUs are used. With four or
more GPUs, the application is too small to utilise all GPUs
fully, preventing further speedup or energy savings. 2) Re-
cent GPUs consume more energy. The latest, such as the
A100, have far more cores, leading to a greater increase in
energy consumption than in performance. For the Cholesky
application, the critical path and data transfers limit the bene-
fits of additional cores. Indeed, the newest GPU (A100) solves
the problem 50% faster than the oldest (P100), but consumes
118% more energy.

Table 6 illustrates howEBA and CBAmanage this trade-off
compared to other accounting methods. Eight A100 devices
provide the best performance, but consume twice the en-
ergy of the P100s. On the other hand, EBA and CBA both
prioritize using 2 P100 GPUs, which provide the lowest en-
ergy consumption and have the lowest embodied carbon rate
(shown in Table 5) compared to newer GPUs. Meanwhile,
a peak performance pricing model charges the least for us-
ing 1 V100 GPU even as it uses twice the energy of 2 P100
GPUs. EBA and CBA balance the trade-offs between
the higher performance ofmodernGPUs and the lower
energy/carbon use of older GPUs.

5.3 Running a Workload
We next examine the cost and resource consumption to run
a workload using the prototype. We experiment with users
deploying Greedy, Energy, and Runtime policies to run a

Table 5. Specifications of GPU nodes. GFlops is the FLOPS
per GPU running GEMM. The average carbon intensity of
all nodes was of 53 gCO2e/kWh. Embodied carbon was cal-
culated according to [40].

GPU Year GFlop/s TDP Carbon Rate

# GPUs 1 2 4 8

P100 2018 6700 250 8.5 9.1
V100 2019 14000 250 19 20 23 28
A100 2021 18000 400 87 93 106 131

Table 6. Comparison of the runtime, energy consump-
tion, and costs under different accounting schemes for the
Cholesky Decomposition with different Nvidia GPUs.

# Metrics Normalized Costs
Time

(s)
Energy

(kJ) EBA CBA Perf.

P100 1 2321 889 1.20 1.40 1.55
2 1396 635 1.0 1.0 1.87

V100 1 1494 1316 1.23 2.07 1.0
2 1190 1194 1.26 1.88 3.23
4 917 916 1.25 1.44 5.13
8 926 944 1.85 1.49 10.4

A100 1 1405 2100 1.83 3.35 2.53
2 926 1427 1.46 2.28 3.33
4 841 1320 1.76 2.11 6.05
8 838 1325 2.59 2.13 12.0

workload using green-ACCESS. We create a workload of 80
functions from linear algebra (MatMul, Cholesky decomposi-
tion [41]), graph processing (Breadth First Search, Minimum
Spanning Tree, Graph Pagerank [30]), and scientific comput-
ing (Molecular Dynamics Ionization Energy calculation [42],
DNA Visualization [30]). All users execute simultaneously,
and each task is allocated resources by core. We measure the
performance of each function before running the workload
to obtain predictions of energy and runtime.

Figure 14 shows the carbon-accounting cost, energy, and
core-seconds consumed. Over the whole workload, selecting
for minimum price reduces cost by 12% and energy by 19%.
We see in Figure 15 that Greedy employs three of the four
machines for this workload. Here, the Ice Lake node was
predicted to be less efficient than the Zen3 node and have a
higher embodied carbon cost than the Desktop and Cascade
Lake node. The prototype illustrates that minimizing
the price of real jobs under CBA prioritizes energy
efficient and lower-carbon machines and validates the
trade-offs seen in the simulation.
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Figure 14. Resource usage of different users while running the same workload on the prototype system.
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Figure 15. Distribution of tasks to machines on the proto-
type depending on policy.

6 User Study
Finally, we focus on the question of how user behavior may
change under a modified pricing scheme. As it was infeasible
to acquire the resources for a large-scale deployment of green-
ACCESS, and changing the allocations of existing systems
may have significant user impact, we developed a simulated
environment to conduct a user study.

6.1 Design
To conduct the study we built a JavaScript game that emu-
lated the decisions that users of a green-ACCESS-like plat-
form would face (see Figure 16). Participants were asked to
imagine that they were a computational scientist who had to
finish all of their jobs within a time and allocation limit, and
they had four machines to use to do so. These instructions
are a proxy for realistic HPC use cases where a researcher
is granted a limited allocation but faces time pressure to
meet a deadline. In our game, a job could be “scheduled”
by dragging and dropping it onto a specific machine. Every
job was randomly assigned a priority between “Low” and
“Very High,” although no instructions were given on how
to treat jobs of different priorities. This ambiguity was in-
tentional. Users had to individually weigh a job’s priority

Jobs Completed: 1 Allocation : 189 Time Left : 49 Energy Used : 71
Advance End Game New Game

Job 0  (Priority: low)

Job 3  (Priority: low)

Job 4  (Priority: very high)

Job 5  (Priority: high)

Machine 1

62 10 10

TaskJob 1  (Priority: very high)

Machine 2

0 0 0

Task

Machine 3

0 0 0

Task

Machine 4

0 0 0

Task

Figure 16. Scheduling game interface. The green boxes are
“jobs” that can be “scheduled” by dragging them onto the
light-grey “machine” boxes. Job runtime, cost, and energy
information were available by hovering over a job.

against its time, energy, and cost. To simplify the effect of
queues, only one job could be scheduled on a machine at a
time. The machines reflected those used in the simulation,
and the resources a job used were inferred using the same
mechanism as the simulation. More jobs "arrived" as jobs
were scheduled to reflect the streaming or time-dependent
nature of real workloads. The jobs, and order of jobs was
the same for all participants. Each participant was randomly
assigned to one of three game versions:

• V1: Job cost is proportional to runtime, and no infor-
mation on job energy consumption is shown. This
reflects current standard practice: see Section 2.2.

• V2: Cost is still based on runtime, but job energy con-
sumption is displayed next to time and cost.

• V3: Cost is given based on the EBA formula.
Participants played the game at least twice, with the first
iteration, intended for familiarization with the game and
interface, not used for analysis. The version remained the
same between the first and second play of the game, but was
randomized after that. The game was distributed using the
same channels as the survey.

6.2 Results
After discarding every users first time playing the game, we
received 207 instances of the game played by 90 unique users.
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We discarded 15 instances in which participants finished the
game in less than one minute with a disproportionately high
amount of allocation remaining.
We first assess the impact of displaying energy informa-

tion (V2) and using EBA (V3) on total energy consumption:
see Figure 17. On average, participants using EBA (V3) con-
sumed 1928 kWh in the simulation, while those with V1 or
V2 consumed 3262 kWh and 3142 kWh, respectively. V3 is
significantly lower than V1 or V2 (p=0.00), but there was no
significant difference between V1 (the control) and V2 (with
energy information). In line with survey results, informa-
tion regarding energy consumption alone created no
change in how much energy a participant consumed.

However, in V3 (using EBA), participants also completed
fewer jobs overall. Users with the changed allocation scheme
completed an average of 9.7 jobs compared to 14.5 in V1 and
14.9 in V2. Although we attempted to give an equivalent
sized allocation to users in V3 as V1 and V2, the differing
pricing scheme meant an exact conversion was impossible.
To distinguish the effect of EBA from the effects of a smaller
allocation, in Figure 18 we examine the amount of energy
used, stratified by the number of jobs completed. The figure
shows for any number of jobs completed, users who saw an
EBA version of the game used significantly less energy.

There were two ways a user could save energy: by choos-
ing not to run a job, or by using a more efficient machine to
run a job. To distinguish these two mechanisms, we looked
at the probability that a user selected to run a job. Since
users may have ran out of time or allocation before seeing
all the jobs, we calculate this probability as (# of users who
completed job 𝑖 / # of users who saw job 𝑖). If participants
reduced energy by not running the most energy intensive
jobs, we would expect a (negative) correlation between the
probability of a job being run and its energy consumption.
We plot this correlation in Figure 19. While V3 participants
were less likely to run a job in general (since they completed
fewer jobs on average), there is no correlation between job
energy consumption and the probability that a user ran a job,
in any game version. Thus, the decision to run a job was
not influenced by the energy consumed, even though
job cost depended on the energy.

The other mechanism by which users could consume less
energy while completing the same jobs was to employ more
efficient resources. In Figure 20 we illustrate these decisions
by plotting the average energy used to run each job across
different versions. Note that for each job and each participant,
there are only four possible values for the energy consumed
by a job, based on the four different machines. A lower av-
erage energy consumption means more participants chose
more efficient machines. For 16 of the 20 jobs, the average
energy consumed across participants in V3 of the game was
the lowest out of the three versions. This suggests that un-
der EBA, when participants elected to run a job, they
selected a more efficient machine to do so.

7 Related Work
Sustainable data-centers: Prior work examined adapting
data-center capacity or demand to reduce power, cost, and
carbon emissions [9, 43, 44], for example by scheduling jobs
to data-centers currently powered by renewable energy. The
Zero-Carbon Cloud project further examines running data-
centers on “stranded” power — excess power generated when
grid supply exceeds load [11]. Such scheduling requires users
to provide jobs that can be delayed or moved.

Runtimes: Numerous works on energy-efficient comput-
ing focused on adapting dynamic voltage and frequency
scaling (DVFS) to high performance environments [45, 46].
DVFS allows software to lower CPU frequency to reduce
power consumption at the cost of a lower processing speed.
These works attempt to improve efficiency or meet a power
budget while minimizing performance impacts [6, 47]. How-
ever, if users are not charged for energy consumption, they
have limited incentive to adopt these techniques.
Green serverless: The problem of emissions has been

noted by the FaaS community [48]. GreenCourier imple-
ments carbon-aware scheduling of serverless functions based
on cluster location [49], and GreenWhisk [50] extends load
balancing with the grid’s carbon intensity and energy sta-
tus of off-grid executors. In contrast, we exploit both het-
erogeneity and geographic distribution, account for embod-
ied carbon, and engage users into scheduling decisions. Lin
and Mohammed similarly propose carbon aware pricing for
serverless, but consider optimizations to function configura-
tion rather than heterogeneity between systems [51]. Con-
currently with this work, EcoLife [52] uses multi-generation
hardware to reduce the carbon footprint of serverless plat-
forms. While EcoLife focuses on optimizing scheduling and
keep-alive time, our work focuses on user behavior.

Motivating sustainable behavior: Little work has stud-
ied incentives for adopting the many techniques for devel-
oping energy-efficient software. Di Pietrantonio et al. sug-
gest that the Thermal Design Power (TDP) of a device can
be used to calculate a static cost-ratio between GPU and
CPU nodes [53]. Slurm provides energy accounting capabil-
ities [22], but these have not been incorporated into com-
puting allocations. Georgiou et al. suggest incorporating
energy into the cluster scheduling algorithm to prioritize
energy-efficient users [54]. Other works have proposed in-
corporating the price of electricity into the cost of cloud
VMs [55–58]. These works emphasize deferring costs rather
than incentivizing sustainability, and do not examine the
same trade-offs as here. Guyon et. al. study the effect of
choosing lower performance VMs on overall data-center
efficiency [59]. Margery et al. propose attributing CO2 emis-
sions to VMs [60], but lack details, and do not account for
emissions other than electricity generation.

11



1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

EuroSys ’25, March 30 – April 02, Rotterdam, Netherlands Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1 2 3
Version

0

1000

2000

3000

4000

To
ta

l E
ne

rg
y 

Us
ed

1 2 3
Version

0

5

10

15

20

Jo
bs

 C
om

pl
et

ed

Figure 17. Energy used and jobs completed with different versions of the game. In the EBA version of the game (V3) participants
used less energy but also completed fewer jobs.
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Figure 18. Total energy used for each version of the game,
broken down by number of jobs completed. Those playing
V3 used less energy to complete the same number of jobs.
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Figure 19. Proportion of users who ran a job vs. average
energy consumed by job. Energy use was not correlated with
probability of running a job in any version of the game.
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Figure 20. Average energy per job by game version. For
16 of the 20 jobs, participants using EBA (V3) achieved the
lowest average energy consumed.

8 Summary
Computing is a significant source of energy demand and
greenhouse gas emissions. The responsibility for sustainable
computing is shared by both producers and consumers. Yet
more than 70% of users remain unaware of energy use and
energy efficiency is among users’ lowest priorities. With the
goal of realizing this shared responsibility, we introduced
Energy- and Carbon-Based Accounting (EBA and CBA), two
mechanisms for charging for computing based on environ-
mental impact. To evaluate these mechanisms, first, we used
simulations to show that impact-based pricing can allow an
energy-conscious user to process 28% more of a workload
that a performance-focused user with the same allocation.
Next, we build a prototype FaaS-HPC platform to imple-
ment CBA and demonstrate that CBA incentivizes more
sustainable decisions which are disincentivized under cur-
rent accounting models. Finally, we demonstrate that users
in a simulated environment use less energy under EBA. By
linking costs to energy use and carbon emissions, EBA and
CBA incentivize users to prioritize sustainable computing.
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